侧边栏壁纸
  • 累计撰写 247 篇文章
  • 累计创建 16 个标签
  • 累计收到 0 条评论

目 录CONTENT

文章目录

字符串匹配算法之 Trie 树的定义、实现及应用

kaixindeken
2021-04-21 / 0 评论 / 0 点赞 / 107 阅读 / 2,509 字

Trie 树的定义

Trie 树,也叫「前缀树」或「字典树」,顾名思义,它是一个树形结构,专门用于处理字符串匹配,用来解决在一组字符串集合中快速查找某个字符串的问题。

注:Trie 这个术语来自于单词「retrieval」,你可以把它读作 tree,也可以读作 try。

Trie 树的本质,就是利用字符串之间的公共前缀,将重复的前缀合并在一起,比如我们有["hello","her","hi","how","see","so"] 这个字符串集合,可以将其构建成下面这棵 Trie 树:

1.jpeg

每个节点表示一个字符串中的字符,从根节点到红色节点的一条路径表示一个字符串(红色节点表示是某个单词的结束字符,但不一定都是叶子节点)。

这样,我们就可以通过遍历这棵树来检索是否存在待匹配的字符串了,比如我们要在这棵 Trie 树中查询 her,只需从 h 开始,依次往下匹配,在子节点中找到 e,然后继续匹配子节点,在 e 的子节点中找到 r,则表示匹配成功,否则匹配失败。通常,我们可以通过 Trie 树来构建敏感词或关键词匹配系统。

如何实现 Trie 树

从刚刚 Trie 树的介绍来看,Trie 树主要有两个操作,一个是将字符串集合构造成 Trie 树。这个过程分解开来的话,就是一个将字符串插入到 Trie 树的过程。另一个是在 Trie 树中查询一个字符串。

Trie 树是个多叉树,二叉树中,一个节点的左右子节点是通过两个指针来存储的,对于多叉树来说,我们怎么存储一个节点的所有子节点的指针呢?

我们将 Trie 树的每个节点抽象为一个节点对象,对象包含的属性有节点字符、子节点引用和是否是字符串结束字符标志位:

class TrieNode {
public:
    char data;
    TrieNode* children;
    bool isEndingChar = false;

    TrieNode() {}

    TrieNode(char data){
        this->data = data;
    }
};

要构造一棵完整的 Trie 树,关键在于存储子节点引用的 $children 属性的实现。借助散列表的思想,我们通过一个下标与字符一一映射的数组,来构造 $children:我们将字符串中每个字符转化为 ASCII 码作为数组下标,将对应节点对象引用作为数组值,依次插入所有字符串,从而构造出 Trie 树。对应 C++ 实现代码如下:

class Trie {
private:
    TrieNode root;
public:
    Trie(){
        this->root = TrieNode('/');
    }

    void insert(char* text){
        TrieNode p = this->root;
        for (int i = 0; i < sizeof(text); ++i) {
            int index = (int)text[i] - (int)'a';
            if (p.children[index].data){
                TrieNode newNode = TrieNode(text[i]);
                p.children[index] = newNode;
            }
            p = p.children[index];
        }
        p.isEndingChar = true;
    }

    bool find(char* pattern) {
        TrieNode p = this->root;
        for (int i = 0; i < sizeof(pattern); ++i) {
            int index = (int)pattern[i] - (int)'a';
            if (p.children[index].data){
                return false;
            }
            p = p.children[index];
        }
        return p.isEndingChar;
    }
};

Trie 树的复杂度

构建 Trie 树的过程比较耗时,对于有 n 个字符的字符串集合而言,需要遍历所有字符,对应的时间复杂度是 O(n),但是一旦构建之后,查询效率很高,如果匹配串的长度是 k,那只需要匹配 k 次即可,与原来的主串没有关系,所以对应的时间复杂度是 O(k),基本上是个常量级的数字。

Trie 树显然也是一种空间换时间的做法,构建 Trie 树的过程需要额外的存储空间存储 Trie 树,而且这个额外的空间是原来的数倍。

你会发现,通过 Trie 树进行字符串匹配和之前介绍的 BF 算法和 KMP 算法有所不同,BF 算法和 KMP 算法都是在给定主串中匹配单个模式串,而 Trie 树是将多个模式串与单个主串进行匹配,因此,我们将 BF 和 KMP 这种匹配算法叫做单模式匹配算法,而将 Trie 树这种匹配算法叫做多模式匹配算法。

Trie 树的应用

Trie 树适用于那些查找前缀匹配的字符串,比如敏感词过滤和搜索框联想功能。

1、敏感词过滤系统

用到了 Trie 树来对敏感词进行搜索匹配举例:首先运营在后台手动更新敏感词,底层通过 Tire 树构建敏感词库,然后当商家发布商品时,以商品标题+详情作为主串,将敏感词库作为模式串,进行匹配,如果模式串和主串有匹配字符,则以此为起点,继续往后匹配,直到匹配出完整字符串,然后标记为匹配出该敏感词(如果想嗅探所有敏感词,继续往后匹配),否则将主串匹配起点位置往后移,从下一个字符开始,继续与模式串匹配。

2、搜索框联想功能

另外,搜索框的查询关键词联想功能也是基于 Trie 树实现的:

1.jpeg

进而可以扩展到浏览器网址输入自动补全、IDE代码编辑器自动补全、输入法自动补全功能等。

0

评论区